&390 (intel

T - -Systems- - -

GASPI AND THE
EXA2CT PROJECT

JUNE 2015, CRIHAN-CORIA
ERIC PETIT

uvsQ

SEVENTH FRAMEWORK
PROGRAMME

Outline

Outline

e A briefintroduction to Exa2ct.

* About proto-applications

» Distributed/shared, harware/software, address space...

* Anintroduction to one of the main building blocks of Exa2ct -

GASPI

s e s

Xeon Xeon Phi Xeon Xeon Phi

14/06/15

Exa2ct: EXascale Algorithms and
Advanced Computational Techniques

Exa2ct

i H . Universiteit 4
g \mec intel u Antwerpen ‘;z 2zl — Universita
Svizzera
italiana

: ¢
T - -Systems- - - NAg janovations
Centrum excelence

NNNNNNNNNNNNNNNNNNNNNNN

Z Fraunhofer

Strategy

Proto-Applications
* Extracted from real-life HPC applications of Scientific &
Industrial Board (SIB) members.

Enhanced Numerical Algorithms
Scalable, Pipelined, Robust Numerical Solvers

* That scale up to exascale performance
* That offer increased arithmetic intensity
* That survive hardware failures

Enhanced Programming Models
* Scalable
* Suitable for heterogeneous
Architectures
* Resilient

NUMERICAL ALGORITHMS

PROGRAMMING MODELS

—
Z
L
=
L
)
<
iz
<
=

PROTO-APPLICATIONS

14/06/15

The proto-application concept

Why not experimenting in the
original application?

* Full applications are complex and costly to execute at scale
 Difficulty to experiment ground breaking solutions
* Cost of the experiments (time, PY, CPUs)
* Need proof of concept demonstrating ROI to decide

* Codes and use-cases might not be easily shared with the
community

* Need a strong and daily support of the application developer

* Portability of the solution
* Over specialization

* Learning curve, even in the same company/context

The Proto-App concept

 Aka mini-app, proxy-app (NERSC trinity, Argonne CESAR, the Montevo
project...)

* Objectives: Reproduce at scale the behavior of a set of HPC
applications and support the development of optimizations that can
be translated into the original applications

 Easier to execute, modify and re-implement

* If you cannot make the application open-source, you can at least open-
source the problems.

* Support community engagement
* Reproducible and comparable results
* Interface with application developers

Building a proto-application

* Two alternatives with pros and cons

Build-up (CFD-proxy, DLB bench, upcoming mini-FMM)
* ‘Mini-app’ that mimic a full application with simpler physic
e All aspects are explored
* No/Less IPissue(s)
* No specific problem targeted
* Behavior at scale?
* Representativeness?
* Feedback to the real code?
* Use cases?

* Strip down (mini-FEM, DefCG (Yales2))
* ‘Proxy-app’ which extracts and refines a particular kernel from an application
* Target a specificissue
* Must be representative at scale
* Easy feedback to the user

* Only a part of the application is addressed
* Problem coupling?

* Use cases generation?
* [P (code and use case)

* IMHO | prefer the second one, building multiple proto-apps from an application to expose the
different problems => however it requires the application developer and end-user experience

What are our objectives?

* Code modernization by mean of proto-application
* Extract proto-application from real use case

* Devellop numerical algorithm and runtimes and demonstrate on the proto-
application

e Port back the improvement in the original application

» ordevellop genuine HPC application if the modernization is not possible

e At UVSQ: Focus on task based programming and runtime

 Dassault Aviation FEM CFD (published and released) (colab. with the ITEA2
coloc project)

* Mini-FEM proto-application
* DC lib efficient and scalable library for hybrid parallelisation of unstructured FEM
code

* Ported back in the original application AND another DA application => validation
of the concept

* CORIA Yales2 Combustion (in progress) using GASPI
* DLBbench proto-application
e DLB_lib alibrary for dynamic load balancing

14/06/15

Use case: Yales2 Combustion

 Chimie and Lagrangian particules (for now)

* Unbalanced load!!! => Demontrate « how to » and propose
a library to efficiently balanced the work on large scale
distributed (and heterogeneous) systems

* Use GASPI and taskify the work to do efficient dynamic
load balancing

. .2D Turbulent premixed flame with kerosene spray. FPITFLES
S ree Ton . TN : DIAMETER (m) = YC_SOURCE_TERM

Exa2xct

Distributed/shared, hardware/software,
address space...

Runtime and programing model
taxonomy in a nutshell (1/2)

* Physically shared memory
* Cache, ram, NUMA, local disk (not NFS)
* Thread based: OpenMP, Cilk+, TBB, Posix
* In between: e.g. MPC
* Physically distributed memory
* Network (infiniband, ethernet)
* Process based: Message passing (MPI), PVM, IPC (posix)

16/06/15

Runtime and programing model
taxonomy in a nutshell (2/2)

* Virtually shared: NFS, PCAS

» Patitioned Global Address Space: Processus shared a virtually
common adress space:

* OpenSHMEM, Co-array, symmetric PGAS, all processor have a
version of the ‘shared’ space, mostly SPMD like parallelism

* GASPI, asymmetric PCAS, any process can independantly expose a
part of his memory (aka segment) to the outside world.

e Other can address any piece of data on any remote exposed memory
(rank, segment, offset)

=> allow more general graph paralleism, dataflow

» #(orth.) APGAS, asynchronous PGAS (X10, Chapel) local and remote
task creation

=> No message passing, but reading and writing to remote memory

Exa2ct Slide 13 16/06/15

Why PGAS should be more scalable?

* No buffer, passive communication, asynchronous, thread-
friendly
 Data flow oriented programming: producer-consummer

* Assoon as a rank produces some data he can write it to the
consumer

* Assoon as a consumer is ready, he can consumes this data
=>asynchronous, fine grain

= Sync on data dependancy, no over-synchronization (e.g. bulk sync.
phases)

=>Very natural programming
* Task based programming:
* more flexibility to communicate

* authorize finner grain work decomposition => more concurency
(comp/comp, comm/comp)

Slide 14 14/06/15

Exa2ct Programming Models

Application

Runtime

Tasks Scheduler

Formulate your program in terms
of logical tasks, instead of threads.

e 1 s e I

t 1 * not anew language or a language extension, but complements

- existing languages (library approach ~ MPI)
- - - * Support for resilience e.g. time-out mechanisms for all non-local

Xeon Xeon Phi Xeon Xeon Phi procedures

GASPI + Tasks =» extreme scalability

Opportunities : Heterogeneous execution platforms for tasks,
task/data migration, task/data resilience, ...

June 12t 2013

An introduction to one of the main building
blocks of Exa2ct - GASPI

GASPI History

* GPI/GPI2

* Originally called Fraunhofer Virtual Machine (FVM)

* Developed since 2005

* Used inindustry projects at CC-HPC of Fraunhofer ITWM
* GPI2 - implements GASPI (GPLv3)

GPI: Winner of the ,, Joseph von Fraunhofer Preis 2013“
WwWw.gpi-site.com

Key Objectives of GASPI

 Scalability

* From bulk-synchronous two sided
communication patterns to asynchronous
one-sided communication

* Remote completion via notifications and
bundled communication.

* Flexibility and Versatility
* Multiple configurable segments
e Support for multiple memory models
* Configurable hardware ressources
* Failure Tolerance
* Timeouts in non-local operations
e Dynamic node sets.

0
V)
<
U

0
v
<
U

Scalability s

——

Performance gaspi_write_notify

Qaspi_notify
—>

—
One-sided read and writes
Remote completion in PGAS with notifications.
Asynchronous execution model

* RDMA queues for one-sided read and write operations, including
support for arbitrarily distributed data.

Threadsafety

* Multithreaded communication is the default rather than the exception.
Write, Notify, Write Notifly

* relaxed synchronization

* traditional (asynchronous) handshake mechanisms remain possible.
No Buffered Communication - Zero Copy.

0
V)
<
U

Scalability

Performance
* No polling for outstanding receives/acknowledges for send
* no communication overhead, true asynchronous RDMA read/write.

* Fast synchronous collectives with time-based blocking and
timeouts

* Support for asynchronous collectives in core API.
* Global Atomics for all data in segments
* FetchAdd, cmpSwap.
 Extensive profiling support. (inc. Scalasca/scoreP)

Versatility

* Segments

* Support for heterogeneous Memory Architectures
(NVRAM, GPGPU, Xeon Phi, Flash devices).

 Tight coupling of Multi-Physics Solvers

* Runtime evaluation of applications (e.g Ensembles)
* Multiple memory models

* Symmetric Data Parallel (OpenShmem)

* Assymetric

0
V)
<
U

* Symmetric Stack Based Memory Management
* Master/Slave

0
V)
<
U

Flexibility

Interoperability and Compatibility
* Compatibility with most Programming Languages. (library approach)
* Interoperability with MPI.

= Allow iterative porting, and reuse the original code as most as possible
= Possibility to port back to MPI (Why ? Real life constraints...)

* Compatibility with the Memory Model of OpenShmem.
 Support for all Threading Models (OpenMP/Pthreads]..)
* GASPI is orthogonal to Threads.

* GASPI is a nice match for tile architecture with DMA engines (e.g.
kalray, tilera...) Not implemented yet...

GASPI

Flexibility

Flexibility
* Allows for shrinking and growing node set.

User defined collective with time based blocking.
Offset lists for RDMA read/write (write_list, write_list notify)
Groups (Communicators)

Advanced Ressource Handling, configurable setup at startup.
* Explicit connection management.

* Explicit segment registration

0
V)
<
U

Failure Tolerance

Failure Tolerance.

Timeouts in all non-local operations

Timeouts for Read, Write, Wait, Segment Creation, Passive
Communication.

Dynamic growth and shrinking of node set.
Fast Checkpoint/Restarts to NVRAM.
State vectors for GASPI processes.

The GASPI API

e 52 communication functions
* 24 getter/setter functions — srrmmsorzey ¢ sogrenc e tocm

, offset_local

* 108 pages ; o e meene

, Bize
notification_id

... butin reality: | potiticarion_vatue
— Init/Term L

,» timeout)
_ Segm e nts (in) segment_id_local: the local segment ID to read from
(in) offset_local: the local offset in bytes to read from

_ Read/Write (in) rank: the remote rank to write to

(in) segment_id_remote; the remote segment to write to

(in) offset__remote: the remote offset to write to

— Passive Communication
— Global Atomic Operations
— Groups and collectives ety

(in) size: the size of the data to write
(in) notification_ id: the remote notification 1D

(in) notification_value: the value of the notification to write

www.gaspi.de

GASPI Matrix Transpose pseudo-code

(From the tutorial, simple but very efficient)
fpragma omp parallel
{) [ATA[A[ATA]
#pragma omp master il EF:;I -*l EERES
for all neighbours ‘:;:; o[ole _,] /e e /8.
write notify (tile) 2 O A DA D

while (notcomplete)

{
wailt for notify(Q@tileld)

atomic reset notification(@tileId)
If (tileId)

notcomplete=notcomplete-1
do local transpose(tileId)

D
wny
O
O
(Vp]
C
O
-
I_
X
-
)
O
=

Implementation (GPL v3)

Bandwidth - Infiniband FDR (GPI-2, MVAPICHZ2-1.9)
7000 ! !

| |

3000

Bandwidth (MB/s)

GP|-2 ——
IB tools —»—

MPI (Send/Recv) —a— —

M|PI (Put) |_-_

2000

al
wm
< 1000
U

2b 16b 64b 256b 1K 4K 186K 128K 1M 8 MB
Size (bytes)

GASPI

Implementation (GPL v3)

1000

100

latency (us)

(MVAPICH2-1.9) mit GPUDirect RDMA.

Latency, Inter-Node GPU-to-GPU

—+-Mvapich2 -=GPI2

10 -

00 W o~
~N U
— N un

data size (byte)

128k |

256k

512k |

M
M
am

http://www.gpi-site.com

0
V)
<
U

Conclusion

* Sure Exascale will require some weak-scaling...

* but it will be also be strong scaling (manycores)

* Flat MPI and bulk synchronous models will not work at scale

* OpenMP? Pragma? Communication and scheduling explicit

management? Vectorization? Accelerator DSL?
=> Can it remain the end-user concern? => oblivious programing concept

Todays concerns:
Code/algorithm modernization
Taking the right direction
Secure the investment
=>Propose a new alternative to address parallel programming, PGAS is
one step in that direction.
= Not a big jump! (like Chapel for example)

Thanks, questions?

* Exa2ct member will be at ISC (Booth, HPCSET and

* Next GASPI Forum Meeting: Parallel to ISC in Frankfurt.
* Next GASPI Tutorials 27.4. HLRS, 21.5 Bristol (Archer)

* GASPI Forum mailing list: gaspi-forum@kth.se

G v

o

" A
wiv
v
22

Backup slides

Task (Graph) Models + X

MPI_Post/Start

(o]
e
. .
MPI Put Write Notify '.\ s ’
_— - AN 1 I’
p)
N — ’ 4
ggg} gggi 4 ,’
——— ' "
) Scatter/Flux Computation 4
MPI Complete/Wait ° V4
—_— [©) ‘l‘
’
Scatter/Flux Computation ® R4
o 'd
o &
o
Barrier
- Time

Time

CFD Proxy

Exa2ct Proto Application — Ghost Cell Exchange at Exascale 4#7
DLR
* Multithreaded OpenMP/MPI/GASPI reconstruction of
gradients of a pre-partitioned and pre-coloured aircraft
(DLR F6) 2 million point mesh.
 Subsequent halo (ghost cell) exchange for the gradients.
* Reordering of mesh faces, halo faces first.
* Trigger send / put [write of the halo parts as early as possible.
* First thread which completes the halo for one of the
commpartners issues send / put [/ write.
Linear weak scaling.
Strong scaling scenario ~ 50 mesh points per core.

V
o]0
C
o
C
O
X
1)
O
©
L

CFD Proxy on Xeon lvy Bridge

900

=4=comm_free

“@=gaspi_bulk_sync

=#=gaspi_async
==mpi_bulk_sync

==mpi_early_recv

=8=mpi_async

=+=mpi_fence_bulk_sync

—mpi_fence_async

V
o]0
C
o
C
O
X
1)
O
©
L

~mpi_pscw_bulk_sync

=b=mpi_pscw_async

800/100/13 mesh points per thread

300 400 500 600 700 000 1100 1200

Slide 34 14/06/15

- MPI Notification Emulation on Xeon
Phi

O 140 ——comm_free
i - 120 / —8-gaspi_bulk sync
U =k—gaspi_async
:*: 100 .
=>mpi_bulk_sync
Ll —o .
80 —*mpi_early recv
O =®—mpi_async
— 60
m —+mpi_fence bulk sync
I 40 / —mpi_fence async
—mpi_pscw_bulk sync
- pi_pscw_bulk sy
’X =®—mpi_pscw_async
(o) T T T T

0 60 120 180 240

https://github.com/PGAS-community-benchmarks

Slide 35 14/06/15

140

120

~4-comm_free

~~mpi_bulk_sync
—&~mpi_early_recv

==mpi_async
~#=gaspi_bulk_sync
~&~gaspi_async
~+-mpi_fence_bulk_sync

—=mpi_fence_async
~—mpi_pscw_bulk_sync
~4—mMmpi_pscw_async

CFD Proxy Xeon Phi
3V Multigrid Lvl 1

slide 36 14/06/15

CFD Proxy Xeon Phi
3V Multigrid Lvl 2

160

140

120

100

80

==comm_free:
=#-mpi_bulk_sync:
=&=mpi_early recv:
=>e=mpi_async:
=#=gaspi_bulk_sync:

=@=gaspi_async:

—~+=mpi_fence_bulk_sync:
—=mpi_fence async:
~—=mpi_pscw_bulk_sync:

==mpi_pscw_async:

Slide 37 14/06/15

CFD Proxy Xeon Phi
3V Multigrid Lvl 3

70

==comm_free
=@=mpi_bulk_sync
=s=mpi_early_recv
=3=Mpi_async
=»=pgaspi_bulk_sync
=&=gaspi_async
~+=mpi_fence_bulk_sync
~==mpi_fence_async
w==mpi_pscw_bulk_sync

=4=Mmpi_pscw_async

Slide 38 14/06/15

